EUROPEAN WORKSHOP ON DATA STREAM ANALYSIS March, 14-16, 2007 » Caserta, Italy

Fundamentals of Analyzing and Mining Data Streams

Grabam Cormuode

ATE'T Labs—Research, T8 Park Avenue, Florham Park, M) 07932 USA

Abstract. Many scenarios. such as network analysis, otility monitoring, and financial applications,
generate massive streams of data. These streams consist of millions or hillions of simple updates every
hoar, and must be processed (o exiract the information described in Gny pieces. This survey provides
an introduction the problems of dorg steeam mondioring, and some of the lechmgues (hat have been
developed over recent years to help mine the data while avoiding drowning in these massive flows of
information. In particular, this tutorial introduces the fundamental techniques used to create compact
summaries of data streams: sampling, sketching, and other synopsis technigues. It describes how o
extract features such os clusters and association rules, Lastly, we see methods (o detect when and how
(he process peneraling the siream s evolving, indicating some important change has occummed.,
Eevwords: data streams, sampling, sketches, association rules, clustering, change detection.

1 Introduction

In recent yeurs there has been growing interest in the study and analysis ol dara streams: (lows of data that
are so large that it is usually impractical to store them completely data. lnstead, they must be analyzed as
they are proxduced, and high quality results guaranteed. no matter what outcomes are observed as the stream
progresses. This tiloral surveys some of the key ideas and techmigues that have been developed o analyze
and mine such massive data streams. See [13] for a longer survey from an algorithmic perspective.

Maotivation [or studying data streams comes [rom a variely of greas: scienfilic dala peneration, [rom
satellite observation to experiments on subatomic particles can generate terabytes of data in short amonnts
of time; sensor networks may have many hundreds or even thousands of nodes, each taking readings at a
high rate; and commumications nelworks generale huge quantitics of meta-data aboul the rallic passing
across them. In all cases, this information must be processed and analvzed for a variery of reasons: 1o
memitor a syslem, analyee an experiment, or W ensure that g service is running correctly. However, given
the massive size of the input, it is typically not feasible to store it all for convenient access. lnstead, we st
operate with resources much smaller than the size of the input (“sublinear™), and still guarantee a good
guality answer lor particulur computations over the data,

From these disparate settings we can abstract a general framework within which o stody them: the
streaming maodel. In fact, there are several vanations of this model, depending on what form the inpul may
take and how an algorithm must respond.

Models: Arrivals only, or Arrivals and Departures. The basic model of data streams is an arrivals-only
one. Here, the stream consists of a quantity of mples, or items, which describe the input, Typically each tuple
is 4 stmple, small object, which might indicate, for example, the wdentity of a particular object ol intercst, and
a weight or value associated with this arrival. In a nerwork, the observation of a packet could be interpreted
as a luple indicating the inlended destination of the packel, and the size of the packel payload in byles. For
another application, the same packet could be interpreted as a mple whose identity is the concatenation of
the source and destination of the packet, with a weight of [, indicating that it is a single packet, Typically, we
can inlerprel these streams as delimng massive imphcil vectors, indesed by ilemn names, and whose entres
are (uswally) the sum of the associated counts (although many other interpretations may be possible). A
richer model allows departures: in additional to positive updates w entries in this implicit vector, they may be
negative. This capiures more general situations in which carlier updates might be revoked, or observations
for which negative values are feasible. In either case, the assumption is that each fuple in the input stream
must be processed as it is scen, and canmol be revisited later unless i is stored explicitly by the stream
algorithm within its limited internal memory.

Randomization and Approximation. Within these models. many natural and fundamental questions can
he shown to require space linear in the impul o answer exactly. For example, to lest whether two separate

© Revue MODULAD, 2007 1 Numéro 36
— I —————————————————————————I——— — ———

EUROPEAN WORKSHOP ON DATA STREAM ANALYSIS March, 14-16, 2007 » Caserta, Italy

streams are the same (e, they encode the same number of occurrences ol each ilem) requires us Lo store
space linear in the number of distinct items, which could be immense, To be able to make progress, we
ypically allow approximation: reluming an answer Lhal 15 cormect within some small fraction, ¢ of crmor;
and randomization: allowing our algorithms to make random choices and to fail with some small probability
d. Algorithms which use both randomization and approximation we refer to as (. 4} approximations.

Update time, query time and space usage. To evaluate algorithms that operate on streams, we typically
Lok al their behavior with respect o three additionad features:

— Updarte time: the time to process each stream update.
= Query fime: the Gme o use the information stored o answer the gquestion of inleresl
— Space Usage: the amount of memory wsed by the algorithm to keep information.

Typically. these three are measured in Lerms of parameters of the stream: the number of tples, woand te
number of different items yi: and the parameters « and &, To be an effective streaming algorithm these
measures, particularly the space used, should be sublinear in mand n, and ideally poly-logarithmic (i.e.
O log e log 0 Tor some constant «.

2 Streaming, sketches and summaries

In this section we outline two fundamental approaches to coping with streaming data: drawing a represen-
lative sample, and creating o compact “sketeh™ of the stream.

2.1 Random Sampling;: reservoir and minwise

Muany mining algorithms can be applicd il only we can draw a representative sample of the data From
the stream. The question is, how to ensure such a sample is drawn uniformly, given that the stream is
comtinuonsly growing? For example, if we wanl to draw a sample of [0 ilems and the stream has length
only 1000, then we want to sample roughly one in ten items. But if a further million items anive, we mist
ensure that the probability of any item heing sampled is more like one in a million. If we retain the same
100 mems, then this is very skewed o the prelis of the stream, which is unlikely o be representative.

Several solutions are possible to ensure that we continuously maintain a wniform sample from the
stream. The idea of reservoir sampling dates back to the eighties and before [15]. Tt is easiest to describe
il we wish o druw o sample of stee 1 Here, we imilialize the sample with the first ilem from the stream.
We replace the current sample with the ith item in the stream (when it is seen) by throwing some random
hits to simuolate a coin whose probability of Tanding “heads™ is | /4, and keeping the ith item as the sampled
item if we observe heads. 1Uis a simple exercise W prove that, afier seeing n items, the probability that any
of those is retained as the sample is precisely 1,1, One can generalize this technique to draw a sample of &
items, cither with replacement (by perlorming & independent repetitions ol the ahove algorithm) or without
replacement (by picking % items and replacing one with the ith with probability 1/1).

A drawhack of this approach is it does not easily generalize when we have many, distributed streams,
and wish w sample unilormly from their union. For example, consider rying o sumple [Tom o stream
formed by nerwork traffic crossing the Atlantic and Pacific oceans. It is not feasible 1o operate jointly on
both streams. Tnstead we use an alternative sampling algomithm, which we refer 1o as “min-wise sampling”™
{by analogy with an alternate technique known as min-wise hashing |3]). For each item in the stream we
pick a random label as a real number in the range 0 to |. We retain the item with the smallest random label
seen so far 1L is straightforward o observe that cach ilem has an egual chance of getting the smallest g,
due 1o the symmetry of the procedure. and therefore ir picks uniformly from the stream. Moreover, we can
run the same algorithm across distnibuted streams and merge the results o get an item picked uniformly
from the (disjoint) union of the streams, by picking the retained item with the smallest label.

Application: Estimating Entropy. The empirical entropy ol a sequence of characiers is computed by
finding the number of occurrences, f;, for each character ¢ and computing H = 7 | {I‘ log, - . This

entropy 15 often used in network monitoring applications to detect anomalics. When the number of possible

© Revue MODULAD, 2007 2 Numéro 36
— I —————————————————————————I——— — ———

EUROPEAN WORKSHOP ON DATA STREAM ANALYSIS March, 14-16, 2007 » Caserta, Italy

items e is very laree, we need a different approach to approximate the entropy. We build an estimator for
entropy as follows based on sampling a position j in the stream (using the above min-wise sampling}, and
counting the number of subscquent oceurrences i the stream ol the character al position 7 as r. We can
build an unbiased estimate of IT as rlog 7 — (r — 1) log -5 This estimate is not very reliable: it can be
improved by taking the average of many repetitions using different random samples. This can be shown o
give an (=, %} cstimutor; by Laking the median of Oflog 1/4) repetitions we lorm an (7. 4) estimator.
This works well when H is large, but H can be very small, which results in a less reliable estimator. Further
modilications ol this lechnigue can be used o generale an e, 4) estimator; see [4] Tor details.

2.2 Sketches for Estimation

Many data stream problems cannot be solved with just a sample. Instead, we can make use of data structures
which, in ellect, include a contribution [rom the entire inpul. rather than just the itlems picked in the sample.
For example, consider trying to count the number of distinct objects in a stream. It is easy to see that unless
almiost all items are included in the sample, then we cannot el whether they are the same or distinet. Since o
streaming algorithm gets o see ecach item in turn, it can do better, as we shall see later. We refer o o “sketch”™
as a compact data structure which summarizes the stream for certain rypes of query. Typically it is a linear
trunslormation of the stream: we can imagine the stream as delining a vector, and the algorithm computes
the product of a matrix with this vector (to be effective, the matrix mwst have a very small representation,
e.g. being defined implicitly by hash functions). We highlight three popular sketch algorithms:

Count-Min Sketch. The count-min sketch |6] is an array ol counters ol siee % ® log % and log ¢ hash
functions. Each npdate is mapped to log ; counters, one in each row, which are incremented to reflect the
update. From this data structure, one can estimate the frequency f; of any item, with ermor at most cn with
probability at least 1 — 4, in space O(1 log 1),

Flajolct-Martin Sketch. The Flajoler-Martin sketch [10] is a bitmap of length approximately log . Bach
item is mapped by a hash function into an entry of the bitmap: with probability i_; il maps into entry |, il' Loy
entry 2, % o entry 3 and so on. Por each item in the stream, we map (o s bit under the hash function, and
set the bit to |, The position of the least significant {0 in the bitmap indicates the logarithm of the number
ol distinet ilems seen, [7; laking repetitions with randomly chosen hash [unctions improves the accuracy.
Space 0% log ¢) is sufficient for an (¢, §} approximation of I,

AMS Sketches, The Alon-Matias-Szegedy sketch [2] can be described in terms of the Count-Min sketch.
MNow, when we go Lo update a counter, we multiply the value ol the update by a hash [unction g on the ilem
being updated: half the items are mapped to {1 by this hash function, and half to — 1, Taking the sum of
the sguares of all counters in each row gives a high-guality estimate for £ — Z:’H . £, the sum of the
squares of the frequency counts. This computation, or variations thereof, is al the heart of many data siream
analyses, An (¢,) approximation for F; can be formed in space O(L log ;).

Ao commaon leature of these sketch algorithms is that they rely on hash functions on item identifiers,
which are relatively easy to implement and fast o compute. Indeed, many practical sireaming data manage-
ment systems implement such sketches, such as Sprint’s CMON system [|14] and AT&T s Gigascope [8],
both ol which operate on network data streams al gigabil speeds. Implementations ol skelches can be [ound
onthe web, including http: / /www.cs. rutgers.edu/ "muthu/massdal ~code-index . html,

3 Stream Data Mining Algorithms

Building on ideas of sampling and sketching, we can desizn algorithms for specific analysis and data mining
tasks. We discuss three popular problems: association rule mining, change detection, and clustering,
3.1 Association Rule Mining

A classic problem in data mining is Association Rule Mining [1]. Given a large collection of transactions
i, each of which is a subset of possible ilems, for example sets of flems bought from a supermarket, the

© Revue MODULAD, 2007 3 Numéro 36
— I —————————————————————————I——— — ———

EUROPEAN WORKSHOP ON DATA STREAM ANALYSIS March, 14-16, 2007 » Caserta, Italy

zoal is for lind rules of the form X — 4. The support of the rule 1s the fraction of the input which contains
all members of the rule, ie. |{¢|X U {y} © #;1/[{t;]]. The confidence of the rule is the number of input
trunsactions which contains all members ol the rule divided by the number containing the conditions (lell
side), Le. [{{ X Ufg} € L/GIX S) In general, one seeks to find all rules with support and confidence
baoth exceeding specific thresholds. There are exponentially many possible rules, and so careful strategies
are desigoed e scarch through them elliciently. Typically, the problem is reduced w one ol linding all
Sfrequent itemsets: subsets of items with high support (above some threshold ¢). From these itemsets, the
associalion rules cun be determined.

Clearly this problem is especially challenging when the input transactions are observed in a stream-
ing fashion, and limited resources are available to process them. Tndeed, even the question of finding the
frequent T-itemsels (sels ol stae 1) — o necessary precursor o solving the general problem — 15 1 chal-
lenge when the set of possible items is laree, and has attracted significant interest. Sketching techniques
as outlined ahove can be applicd, but here we describe delerministic (non-randomized) approaches. The
SpaceSaving algorithm |12] shows that the problem can be (e.()) approximated using space ({1). It racks
a set of k = 1 /r items and associated counts. For each item, if it has an associated counter then the counter
s ancremented; else, the item replaces the ilem with the smallest count and that count 15 ineremented. 1L
can be shown that this simple algorithm gives the desired accuracy, and can be implemented efficiently.

Criven ways 1o find frequent items. they can be extended o frequent itemsets. The method ootlined by
Manku and Motwani [11] attempts 1o use the avaalable space as lully as possible. For cach new transaction,
it generates all the subsers, and stores them in a compact frie-based stuerure, When the space is full, ir uses
a pruning algorithm based on freguent items algorithms o delete the least reguent jlemsels, and track the
error in the estimated counts of each item. This gives an efficient and somewhar scalable solution. although
in general there 15 no convenient non-trivial worst case bound on the space reguired for a given accuracy.
Many variations of the problem have been studied, based on finding itemsels which correspond 1o ordered
subsequences, or sequential patterns (substrings) of the input transactions.

3.2 Change Detection

As we are monitoring a stream of values, a fundamental question is “has the distribution of valves changed
recently?”. We want o know if things have changed so that we can detect anomalics — some devialion
from what is expected — and trigger an alert i6' it has. 1t can well us il there has been some problem with a
data feed which has cansed the distribution to shift. Tf we have built some data mining algorithm based on
a particulur model, a change indicated that the model may no longer be valid and we need o rebuild. But
what is a “change™? It can be the change in behaviour (frequency) of some subset of items, or a change in
other patterns. Here, we lake a definition where the underlying distribution {of frequencies) changes. We
aim 1o do this non-parametcically: that is, without explicitly lixing a model that we expeet the data to fiL

Dasu er al. propose a technique based on statistical bootstrapping o identify when a change has oc-
curred [9]. They consider the case when the inpul consists of a series of points [rom g high dimensional
space (value-based or categorical). Because we do not expect 1o see the exact same points many times,
instead we use a space-partiioning algorithm over a “reference window” to deline regions, and compute
the relative frequencies within each region: a set of empirical probabilities pii) for the reference win-
dow and q{i) for the sliding window. This is applied both to a fixed reference window, and a sliding
windiow, hoth ol siee n points. To est for change, they compute the Kollback-Leibler distanes (KL) as
Dipllg) — 3=, pli)log, p(i) /g(i).

In order to test whether this distance is significance, they use a hootstrapping idea: compute distances
based on randomly assigning points from the two windows (o two sets, and computing the distance. A high
quantile {e.2. the 99th percentile) of the distances is used as a boundary: if the measured KL distance exceeds
this lor several steps, we declare that o chunge hus occurred. The whole procedure can be implemented
efficiently in a streaming fashion by keeping appropriate data structures, and observing that as the sliding
window advances, we do not have to recompute the KI. distance from scraich, but rather can compute it
incrementally from the previows valoe with only a few operations. This wechnigue tums oul W be guibe
efficient in practice, requiring only tens of microseconds per update. Many extensions and variations are
possible, based on vanant formulations, and the wse of other chunge ests, kermel based methods ele.

© Revue MODULAD, 2007 4 Numéro 36
— I —————————————————————————I——— — ———

EUROPEAN WORKSHOP ON DATA STREAM ANALYSIS March, 14-16, 2007 » Caserta, Italy

33 Clustering

The notion of a cluster is a familiar one: we often talk of “cancer clusters”, or “crime clusters”, indicating
a high local density of events. Formally, given a set of items, a good clustering places those items thal are
stmilar together in clusters, and ensures that the items in different clusters are ditferent. 1L is natural (o ry
to extend clustering to a stream, but what does it mean when the stream is so large we cannot store for each
puint which cluster it is allocated w? Typically, we seck a number ol clusters, &, which is much smaller
than the number of points, n to be clustered. After seeing the stream. the output is just the & closters, from
which the mapping of poinls (o clusters is implicit {e.g. each point s mapped to s closest cluster).

We give a simple example of clustering the stream based on optimizing the Eb-center objective: attempl-
ing to minimize the diameter (the maximum distance berween any two points in the same cluster). The
algorithm arses by guessing the dismeter of the clustering is some valoe d. The livst point is allocated a
cluster of its own. For each subsequent point in the stream, if it is far from any existing cluster. a new cluster
comtaining the new poinl s created, else i0is allocated to an existing cluster. T the guess of d was good, then
no more than k clusters will be created. Moreover, il d was reasonably close o the true diameter, then the
diameter of the stream clostering will be within a factor of 2 of the best possible cluster radivs, By trying
different pucsses of d in parallel, and discarding any thut generale more than b clusters, we can build a
i1+ e, 0} {Le. deterministic clustering algorithm |5, 7).

Other stream clustering algorithms get more complex. Some are based on the notion of “core-sels™ a
small subsel of the inpul such thal solving the problem on the subsel gives a good approsimation Lo the
solution on the full input. Yet more use a hierarchical approach: solving the problem exactly on a small
subset of data that fits in memory, then merging such solutions to get an approximate solution to the full
problem. Different technigues are needed w guarantee good results for other clusiering objective functions,
such as f-median, f-means and so on.

References

1. K. Agrawal, T, Imiclinski, and AL N, Swami. Mining association rules between scts of items in large databascs. In
SICMOHD 1993,
. N.Alon, Y. Matias, and M. Sregedy. The space complexity of approximating the frequency moments. In ST
pages 2029 1994,

A Broder, M. Charikar, A, Fricee, and M. Mitzenmacher, Min-wise mdependent permutations. In STOC, 1998,

4. A, Chakrabarti, G. Cormode. and A. MeGregor, A near-optimal algorithm for compating the entropy of a stream.
[SCHXA, 2ENT.

5. M. Charikar, C. Chekuri, T. Feder, and B, Motwani. Tncremental clustering and dysamic information retrieval. In
STOC, 1997,

6. G. Cormode and 5. Muthukrishnan, An improved data stream summary: The count-min sketch and its applica
tions. dowrnal of Algorithms, 3301 153573, 2005,

T. Gl Cormode, 5. Muthukrishnan, and W. Zhuang. Conguering the divide: Continuous clostering of distriboted data
streams. In JCODE, 2007,

8, C. Cranor, T. Jehnson, G, Spatscheck, and V. Shkapenyuk, Gigascope: A stream dutabase for network applica-
tions. In SICGMOL 2003,

4. T. Dasw, 5. Krishnan, 5. Venkatasubramanian, and K. Yi. An information theoretic approach to detecting changes
i multi-dimensional data streams. In foserfice, 2006

10, B Flajolet and G, N, Martin, Probabilistic counting algonithms for database applications, Jowmal of Compaerer
and Svstem Sciences, 31182 209, 1985,

11. G5 Manku and B. Motwani. Approximate frequency counts over data streams. In VLOS, 2002,

12, A Metwally, I Agrawal, and A. El Abbadi. Efficient computation of frequent and iop-k elements in data streams.
Tn JCIT, 2005,

13. 5. Muthukrishnan. Dara Srreams: Algorithms and Applications. Now Publishers, 2005,

14. K. To, T. Ye, and 5. Bhattacharyya. CMON: A general purpose continoous 11° backbone traffic analysis platform.
Research Report RROS-ATL-1 10309, Sprint ATL., 2004,

15, 1, 5 Vinter, Random sampling with a reservoir. ACW Trons, on Matfematioal Softwere, TI0:37=57. March 1983,

[B=]

L

I5DA Electronic Journal of Symbolic T Analysis

© Revue MODULAD, 2007 5 Numéro 36
— I —————————————————————————I——— — ———

